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A perspective on the connections between linear and branched polymer 6 collapses in two dimensions
is provided by a vesicle model with vacancies. Percolation geometry plays simultaneously key roles in
determining the multicritical properties of both problems. For branched polymers, besides two distinct
0 lines, a transition between different collapsed regimes and several exponents are exactly obtained.

Universality issues are also discussed.
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In the context of two-dimensional (2D) lattice statis-
tics, multicritical phenomena of polymer models still pose
many challenging and controversial problems, beyond the
present range of control of powerful tools like conformal
invariance [1]. The collapse transitions of both linear and
branched polymers (BP’s) are notable examples.

It was not until very recently that a full exact deter-
mination of the exponents of a model of 6 collapse for
linear polymers in 2D was achieved through the use of
percolation vacancies as mediators of effective interac-
tions [2,3]. In this formulation the 6 point is obtained
when the vacancies within which the polymer is con-
strained are at percolation threshold. In the light of
present numerical evidence, this 8-point model most like-
ly provides an appropriate description for a very exten-
sive, if not exhaustive, class of 2D linear polymer col-
lapses [4].

The situation is quite different for BP and lattice an-
imal (LA) collapses [5]. In this context, until now, the
most studied models were those in which collapse is in-
duced by increasing a suitable cycle controlling fugacity,
like strongly embedded site LA with nearest-neighbor
(nn) attractive interactions between occupied sites. This
model was studied by transfer matrix methods [6], and,
most recently, -point exponents could be conjectured for
it on the basis of a connection with planar vesicles and
with the tricritical O-state Potts model [7]. A more gen-
eral formulation of the interacting LA problem, obtained
by considering the limit for ¢ approaching 1 of an aniso-
tropic g-state Potts model, was already used in an at-
tempt to identify the role played by percolation in the LA
description [8,9]. This formulation, like that introduced
below, involves three independent fugacities for a grand-
canonical description of a single animal [9]. On the basis
of the same model, the issue of universality of LA 6 tran-
sitions was better focused in Ref. [7], where the possibili-
ty that LA could present two distinct branches of 6
behavior, separated by the percolation critical point, was
already envisaged. Two branches for the 6 collapses of
LA are also suggested by an analysis of numerical series
results, which further give some indication, albeit not
conclusive, of a possible transition between different col-
lapsed regimes [10].

Quite remarkably, in both the linear and LA cases, the
critical point of percolation turns out to be of key impor-
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tance in the physics of 6 collapse.

For linear polymers the percolation threshold coin-
cides with the 8 point since the statistics of a 0 ring is the
same as that of a critical cluster hull [2,3]. On the other
hand, for interacting LA’s of Refs. [9,10] one expects
that, in particular conditions, the statistics coincides with
that of critical percolation clusters. These conditions
most likely single out a highly unstable point on the criti-
cal surface, possibly separating different domains of 6
behavior.

In view of the central importance of percolation in this
field, it is very tempting to search for models in which
percolation geometry could simultaneously play roles ap-
propriate to both cases. This issue is solved in the
present paper by making contact with another area of
current interest, namely vesicle statistics [11-14]. Our
combined description of both linear and branched poly-
mers and LA is indeed based on a planar vesicle model.

The main results of our analysis can be summarized as
follows.

(i) We give evidence for the suspected existence of two
distinct 0 lines separated by a percolation critical point
for LA described by three-parameter models. On the
basis of exact results for vesicles and interacting linear
polymers, we are able to determine the exponents on one
line and to show that they coincide everywhere with the
exponents conjectured for the cycle 0 point in Ref. [7].

(i) We prove the existence of a third transition line,
also departing from the percolation point, and separating
into two distinct regimes the compact phase. The cross-
over exponent on this line can be shown to be exactly
equal to unity, and the critical regime on it is also com-
pact (v=%) and, as far as the LA hull is concerned, coin-
cides with the compact regime of a linear ring polymer
beyond its 6 threshold. This line and one of the 0 lines in
(i) are in fact tricritical in a strict sense, since, in a grand-
canonical framework, the transition to compact behavior
occurring in the region of parameters they limit together
is a first order one, with droplet singularities.

(iii) We determine two relevant exponents at the highly
unstable percolation point and, at least, give exact
bounds for the third one.

Let us consider a self avoiding ring (SAR) on a hexago-
nal lattice. Hexagons act as annealed vacancies, occupied
with probability p, and the SAR is constrained to step on
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occupied regions only. This is nothing but the linear po-
lymer 6-point model of Ref. [2]. By letting an extra
fugacity W control the area enclosed by the SAR, A4, the
generating function, becomes

G(K,p,W)zzKMpH(r)WA(” , (1)

where the sum is over rings r with perimeter |r|, H (r) is
the number of distinct hexagons touched by r, and a nor-
malization per lattice site is implicitly understood. Equa-
tion (1) describes a disklike LA with a self-attracting ring
perimeter, since, for p <1, in order to lower H, the ring
has to revisit more than once (not consecutively) the same
hexagons, creating what we call contacts.
Quantities like the grand-canonical average radius

R(K,p,W)=3K"pH"WA"R(r) /G, 2)

where R (r) represents the gyration radius of r, are ex-
pected to become singular for (K,p, W) approaching tran-
sition surfaces. So, if a surface is second order and can be
parametrized as K =K _.(p, W), we expect, for K -K_,

R(K,p,W)~(K.—K)™", (3)

where v is a suitable exponent, possibly depending on W
and p.

If we consider the center of each hexagon enclosed by »
in Eq. (1) as a LA site on the dual, triangular lattice, G
can be rewritten as the generating function of a strongly
embedded LA without holes, with site fugacity A=K W,
nearest neighbor Boltzmann factor u=K ~? for each pair
of nn sites, and a factor due to interactions on the perim-
eter, p” (" This follows from the obvious relation
64 (r)=|r|+1(r), where I(r) represents the number of
pairs of nearest-neighbor (nn) hexagons enclosed by r.

For p =1 the model reduces to the planar vesicle stud-
ied extensively in Refs. [13,14].

The interactions tuned by p have the effect of inducing
collapse of the perimeter on itself. Lower p’s favor con-
tact rich configurations in which the animal’s perimeter
bends on itself several times, creating deep invaginations
through which the exterior penetrates the vesicle’s struc-
ture. Physically, p, combined with K, should produce
effects similar to those of solvent and contact fugacities in
the generalized interacting LA model of Refs. [9,10].
Indeed, decreasing K, and thus lowering | 7|, contrasts the
tendency to create contact rich configurations by reduc-
ing p. The model can display compact configurations
which are either rich or poor in contacts. The latter ones
are those in which r has a disklike shape, without reen-
trancies.

Even if contacts are realized here in a peculiar way, in
the spirit of previous studies of the linear polymer 6-point
[2], we will assume that model (1) is representative of a
wider class of 2D LA problems described by three-
parameter models [7,9,10]. The different transition sur-
faces and the various multicritical lines and points we
find are qualitatively sketched in Fig. 1.

We prove below that the plane W =1 contains a region
of droplet singularities for model (1). Thus any renormal-
ization group (RG) description of this model should leave
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FIG. 1. Sketch of surfaces of critical and first order singulari-
ties in (K,p, W) space. Region III corresponds to a first order
transition to contact poor compact regime. In regions I and II
the critical regimes are contact rich compact, and swollen BP,
respectively.

this plane invariant under transformation, and we expect
that the flow in this plane is the same as that applying to
the linear polymer 6-point model of Refs. [2,3].

We know that for W=1 there exists a 6 point at p = 1,
with K (4,1)=1, separating the critical line K =K (p,1)
into a swollen SAR branch (p >1), with v=23, and a
compact one (p < 1), with v=1 [2]. At the 6 point the
SAR has the same statistics as a percolation hull, and
v=4%. Indeed p =1 is the percolation threshold for hexa-
gons, and clearly this point also plays the role of the per-
colation point for our LA. On the W =1 plane this point
is twice unstable, and its exponents must be y,; =v"’=;
and y, =, the percolation correlation length index [2].

On the p =1 plane it is by now well established that,
for W <1, the vesicle behaves as a swollen BP, as thin
ramified configurations dominate asymptotically [13,14].
The crossover from the W =1 compact ring, to BP
behavior, controlled by an attractive fixed point at W =0,
is described by an exponent ¢=yv=2. p is the dimen-
sion of a relevant scaling field proportional to (1— W),
whose existence can be established for any fixed point on
the W =1 critical line, as shown below. The value y =2
is consistent with the compactness of the region enclosed
by r. This follows from the fact that dInG /dInW
=( A4 ), and that W is directly coupled to the above field.
Thus scaling gives ( 4 }(K,p,1) = (K, —K) ™%, indicating
that y is the fractal dimension of the enclosed region.

For model (1), =2 must hold on the whole line
K=K (p,1) for 1<p=1 on the W =1 plane, since a
swollen SAR has a compact interior, with fractal dimen-
sion y =2, and v=2 [15]. For p < the SAR is collapsed
(v=1) and the interior is still dense (y =2) [16], so ¢=1
has to be expected on this branch. Of course, the interior
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is still compact but, unlike in the p > ] case, many con-
tacts can be present.

For p=1 and W =1, the existence of the above men-
tioned scaling field should imply y;=2 for the exponent
controlling crossover to the deflated regime. However,
the scaling argument, which reveals consistent for both
the p> 1 and p <1 regimes, could fail, in principle, in
case a zero amplitude should apply to the leading singu-
lar behavior of { 4 ). This cannot be excluded in the ab-
sence of independent information [17]. On the other
hand, we know the fractal dimension (2}) of a percolation
cluster exactly [18]. Since the area enclosed by a percola-
tion hull cannot be less than the area of a percolation
cluster, in which internal holes are excluded, the dimen-
sion we are seeking must satisfy

$Zy;=2. 4)

Indeed, the dimension can also not exceed that of the lat-
tice.

We now elucidate the multicritical nature of the line
K=K (p,1), W=1. As anticipated, the whole region
K <K (p,1),0=p =1, on the W =1 plane, is a surface of
droplet singularities [13]. G is clearly finite on this sur-
face, while it is not hard to prove that G= o as soon as
W > 1. Indeed, for nonzero values of the other parame-
ters, configurations with maximal area at given perimeter
dominate asymptotically and let the sum in Eq. (1) blow
up to infinity. Keeping only one term corresponding to
such a configuration for each || in Eq. (1), the resulting
sum clearly becomes a lower bound for G. On the other
hand, as soon as W > 1, since, for large |r|, H(r) is at
most O(|r]), and 4 (r) is O(|r|?), this bound diverges to
infinity for any K,p >0. This transition, of first order,
signals a sudden jump from finite ring to infinite compact
disk with the solvent fully expelled to the exterior of the
structure and without contacts. The whole transition line
W=1, K=K_(p,1), with 1 <p =1, corresponds to the
same strongly embedded site LA collapse described in
Ref. [7] (vg=21,49=2 [19]) on the basis of a model
equivalent to ours restricted to the p =1 plane.

For critical regimes at W <1, one can prove that, for
any nonzero p, K_.(p, W)« w174 for W —0, with pro-
portionality constant depending on p. This follows from
generalizing inequalities already established for the p =1
case [14], and based on the relation A(r)=|r|/4
+N,;(r)/2— 1, where N; is the number of hexagonal lat-
tice sites enclosed by r. G can be obtained as the order n
contribution to the partition function of an O(n) spin
model when n approaches zero. In a given hexagon per-
colative configuration C, to be weighted with its probabil-
ity in an annealed way, the Hamiltonian has the form

—BH(s,0)c=K 3 s;'s;0,;+arctanh(W)3S T[] ow >
(jde pl. kiepl

(5)

where the first sum is over nn edges separating hexagons
which are occupied in C, and the second is over all hex-
agonal plaquettes and gives an Ising gauge action, with
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o==1 associated to each hexagonal edge. s are n-
component spins satisfying s2=n. Since, in view of the
structure of Eq. (5), neither p nor K can affect a possible
renormalization of W to leading n order, one expects W
to renormalize trivially under a 2D decimation, i.e.,
wW'= sz, for rescaling b. This implies that criticality,
for W <1, is always controlled by fixed points at W =0.
For W approaching zero, the dominant configurations
are those in which N; =0, and each hexagon enclosed by r
contributes to H. For p close to unity the statistics is that
of a ramified structure with thin branches and swollen BP.
critical behavior. Upon decreasing p, configurations with
many external contacts are favored and the branches tend
to collapse on each other to form a compact structure,
very much like in a standard model of a self-attracting
bond BP. It is thus reasonable to expect a 6-collapse
transition when moving along the intersection of the crit-
ical surface with the W =0 plane. The above RG argu-
ment and conjectures for similar LA models [7,10] sug-
gest a whole 0 line joining this collapse transition point at
W =0 with the percolation point at W=1 (Fig. 1). We
thus expect that the critical sheet at 0 < W <1 is split in
two domains by this line. A determination of v and ¢ on
this 6 line is not possible with the methods used here, and
should be attempted numerically [20].

This completes our scenario, leading to the
identification of a second region of compact behavior,
corresponding to the low-p portion of the W <1 critical
sheet. Unlike the previous one, this compact regime is
rich in contacts and solvent inclusions, as also suggested
by the analysis of the low-p region on the W =0 plane.

The line of separation between the two compact re-
gimes [W=1,K =K (p,1),0<p <1], coincides with the
compact SAR critical line on the W=1 plane. Thus, like
swollen SAR’s mark the separation of the contact poor
dense BP phase from the swollen BP regime, collapsed
SAR’s constitute the border between contact rich and
contact poor compact regimes.

Finally we point out that the existence of a scaling field
with y =2 for fixed points at W =1 immediately follows
from the above simple transformation of W under de-
cimation.

The above connections between linear polymer and LA
properties follow from the fact that the model identifies
the LA hull with a SAR. Studies of properly defined LA
hulls in other models could allow interesting compar-
isons.

Up to now, the role of percolation in LA statistics was
always discussed with reference to the bond case [7,9,10].
Here the choice of site percolation is of key importance
in the whole approach.

The ideas inspiring our models can also be generalized,
to the same extent, to discuss 3D LA properties in con-
nection with vesicle statistics and percolation.

To establish how universal are the properties of model
(1) remains an open issue. In particular, the restriction to
LA with trivial homology could be limiting in this
respect. Indeed, it has recently been shown that LA like
ours at p =1 present some differences in thermodynamic
properties in case holes are permitted [21]. On the other
hand, the results of Ref. [7] clearly suggest that, at least
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at the 0 transition to contact poor compact regime, holes
should not matter for universal properties like exponents.
Thus conjecturing universality is not too daring. In any
case, our model is physically sound on its own, and the
fact that many properties have been exactly established
for it gives a solid reference point for the general study of
universalities in LA collapses.

One of the most important results here is the existence
and exact characterization of a transition between
different collapsed regimes. This phenomenon is certain-
ly worth investigating in other more standard models
and, possibly, experiments [22].
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A particularly lucky circumstance here is that we are
also able to determine the relevant indices y; at the per-
colation multicritical point. The values we find for y,
and y,, and the bounds on y;, are fully consistent with
2D percolation in the framework of conformal invariance
[1]. Tests of their universality will be extremely interest-
ing, albeit very challenging.
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